

1

1. Introduction

 Every great competitor knows that analysis and study

are extremely important parts of learning and developing

skills and knowledge; being able to go back and study past

footage, to see what and when mistakes are made, and

learning how to minimize error and learn the habits of

opponents plays a huge part in modern sports and

competition. In today’s modern competitive landscape,

this extends not only to traditional competitions but also

competitions in the virtual space, namely Smash Brothers.

 Smash, while on the surface seems simple and

cartoonish, actually has a surprising amount of depth and

skill in serious levels of play. Any competitive Smash fan

will tell you about the sheer speed and intensity of the

game, anywhere from professional players battling for

international titles or friends going head-to-head at local

tournaments and gatherings. Either way, Smash is very

fast, and sometimes, it can be very easy to miss things

when going back and reviewing footage. That’s why we

wanted to create a tool to help analyze Smash footage, and

to allow players to get an entirely new perspective on

Smash Bros. Ultimate.

 While some applications that analyze Smash footage

already exist (such as Project Slippi for Smash Bros

Melee), none that rely solely on video data exist - that is,

there is no application that can analyze and extract data

without the use of external systems or hardware, such as

input capture devices or separate real-time capture cards.

We wanted to create a system that could return similar

analysis, but without the need for these external devices.

We wanted to allow players to see these statistics and

analyses while only requiring the video footage of

matches.

 While both learning models and competitive gaming

have been around for decades, we still have yet to see a

successful and watershed combination of the two - and

while our analyzer is relatively small in scope and may not

be as refined and accurate as it could be, it can prove to be

a stepping stone of potential for another huge role for

machine learning.

2. Contributions

 The project’s main goal was to act as an analysis tool

which provided information on what each character in a

match was doing at a specific time. Due to the unexpected

scope of the problem, we were only able to complete the

first two parts of the system: an FRCNN for finding

bounding boxes and character labels, and the binary

classifier, which identified whether or not a character was

currently performing a move or not.

 In regards to algorithms, we utilized pre-existing

network architectures, Keras FRCNN and Alexnet, and

already existing training weights. The code for the Keras

FRCNN was borrowed and augmented to fit our system

implementation. For Alexnet, we used Pytorch’s built-in

implementation and restructured it to fit our pipeline’s

needs. The general structure of this system, using an

FRCNN and 2 different Alexnet models, was an original

idea. The video data was both taken from already existing

Youtube clips and generated by our group. Because of the

novelty of this projects goal, there did not exist any

prelabeled data for Smash Ultimate matches - therefore,

our group was required to label and annotate frames from

various Smash Ultimate matches ourselves.

2.1. Idea and Algorithms

 We decided to implement our first network using Keras

FRCNN by another person’s training of the network to

detect Fox from Super Smash Brothers Melee:

https://adamspannbauer.github.io/2017/12/28/super-

smash-cv/. Seeing that he only needed to annotate about

300 frames made us hopeful that we wouldn’t need too

much data to get decent results. Unfortunately, because

Melee and Ultimate are visually very different games, as

well as the scope of our project being much larger,

training this first model proved to be more difficult than

anticipated.

2.2. Code

 The project trained a Keras FRCNN to detect and draw

bounding boxes around 8 separate characters. We took an

already implemented Keras FRCNN from

https://github.com/kbardool/keras-frcnn. We set up a

Colab Notebook to run the python files. Unfortunately, it

seemed this repository hadn’t been maintained recently,

Super Smash Ultimate Match Analyzer

Jay Yoo, Enya Liu, Bryce Caro

https://adamspannbauer.github.io/2017/12/28/super-smash-cv/
https://adamspannbauer.github.io/2017/12/28/super-smash-cv/
https://github.com/kbardool/keras-frcnn

2

and we ran into errors with function names changing,

which we had to fix.

 We also made changes to the test python file to better

suit our needs. In order to get the test_frcnn.py file to

work in Colab and be more flexible in general, we added

an extra argument to specify in what directory the labeled

frames would be saved to. We also added another

argument and fixed the implementation so we could

extract the actual prediction data and save it to a specified

directory. This data was stored in a file and formatted in

the same way that the train_frcnn.py file expected input.

This was purposefully done to make the data more simple

to parse.

 Although we used the pre-trained Alexnet model for our

binary classifier, we had to set up our own DatatSet class

and handle training and testing. We took training and

testing functions from homework 5.

 To help simplify our pipeline, we wrote python scripts

for parsing our annotations into a single text file for easy

input. Because we ended up using two different programs

for annotation, one compatible with Linux systems and

one for Windows, the script parsed the data as both

PascalVOC XML and JSON. This script then went

through each of the annotation folders, split the data into

training and test sets on separate CSV files, and then

grabbed all the test images and put them into a separate

directory.

 Our system also included a script to run the first trained

network on images to provide input for the second

network, including cropping the images by the outputted

bounding box.

2.3 Data

 Since there was no pre-labeled data of Smash Ultimate

footage that included bounding boxes and character

annotations, we had to gather all of the data ourselves.

Some of the data came from Youtube videos, and others

were videos generated by our group recording matches

from our Nintendo Switches. We did all the annotations by

hand, as well. To do this, first we used ffmpeg to split up

the video locally into frames, around one frame per

second. After they were broken up into frames, we then

labeled the frames with a labeling program. We uploaded

these labeled frames into Google Drive so our Colab

Notebook could use them. The programs we used to

annotate were labelImg, which is shown above in the

image, from https://github.com/tzutalin/labelImg, and

VGG annotator, a simple browser-based image annotation

tool (http://www.robots.ox.ac.uk/~vgg/software/via).

3. Data

 Our dataset is limited to 8 characters, with different

costume colors and around 5 different stages, played on

either the Battlefield (triple-platform) or Omega (flat)

forms.

 When gathering the data for the bounding boxes, we

went frame by frame and drew the boxes around each

character shown in the frame. Again, this process had to

be done manually. We also labeled the boxes with which

character they encompassed. This proved difficult at times

because characters often ended up blending in with the

background or stage. Characters with complex clothing

and weapons also proved difficult to annotate, as

determining exactly the boundary of these complex

characters was not always clear.

 The camera also moves to focus on the characters as

they fight, so the backgrounds aren’t static. Sometimes,

because of the complex visual effects and composition, the

characters can also appear to be inside platforms or

covered by other animations or effects, especially when

the characters are using certain attacks or being hit. Some

characters, such as Ganondorf, have capes or, like Lucina,

have swords, and we wanted to include those in the

bounding box. This sometimes led to much larger

bounding boxes for these characters and brought in more

background, which we worried could throw the network

off. Because of these variations, there was inevitably a

decent amount of noise in our dataset. However, we hoped

the noisy data could help the network learn the character,

instead of picking up on other factors like the default color

of the character, giving our model more robustness.

 Annotating the data for the idle binary classifier was

especially tricky, because we had to differentiate ourselves

whether or not the character was using a move. While this

may sound simple, because of the complex and sometimes

subtle starting and ending animations for each move, this

https://github.com/tzutalin/labelImg
http://www.robots.ox.ac.uk/~vgg/software/via/via-1.0.6.html

3

proved to be a difficult task. We were able to work around

this difficulty by recording games where a player-

controlled character simply didn’t use any moves and

another game where the player-controlled character used

lots of moves. Because of the large amount of idle

movement though, this led to an uneven split in our

training data, roughly 70% being idle images and 30%

being non-idle. We kept our testing data an even 50:50

split between idle and non-idle.

 For the character and bounding box detector, the

network can’t generalize on any new characters it’s

shown. Ideally, though, our idle binary classifier will be

able to generalize on new characters, since the pose of

characters walking or running are pretty similar.

4. Method

4.1. Character Recognizer and Bounding Box

 Our character detector was implemented using a pre-

existing model. Specifically we used Keras’s Faster R-

CNN implementation. The input to the training program

for this network was a CSV file consisting of the filepath

of an image, bounding box coordinates, and the label for

the box. We added data augmentation, including vertical

flips, horizontal flips, and 90 degree rotations, to generate

more data from the relatively limited frames we annotated.

The optimizer used was Keras’s Adam with a learning

rate of 1e-5. This was how the training python file was

initially set, therefore we felt that changing any of these

factors may affect performance. For testing, the input to

the test program was a directory for test images.

4.2. Idle Binary Classifier

 Our idle binary classifier used the existing AlexNet

model. The above figure shows the architecture of

AlexNet. Since we only had 2 classes, idle and non-idle,

we added a final layer to go from 1000 dimensions to 2

dimensions, as opposed to the 1000 classes AlexNet

normally outputs.

 We also included data augmentation, in the form of

random horizontal flips, vertical flips, and 90 degree

rotations. We used Cross Entropy as our loss function, and

Adam for our optimizer, with a learning rate of 0.0005 and

a weight decay of 0.0005. We achieved our best results

training on a batch size of 64 and 124 epochs.

4.3. Damage Detection and Character Decider System

 Initially, part of our project was to have a system that

would read the percentages displayed at the bottom of the

screen and record values, in order to create a time plot of

damage over time for each player in the match. Our first

plan included using a python OCR package, pytessaract, to

detect these percentage values per frame - however, this

proved ineffective due to the game’s font and intense

visual effects, causing pytessaract to get inaccurate or non-

existent readings. We attempted to alleviate this issue

through various preprocessing on the percentage images,

including adaptive thresholding, using the color data, and

applying gaussian blur. However, no methods we tried

yielded consistent results, and our group ultimately

decided that it was much more important to allocate our

4

time towards the multiple models in the pipeline.

Therefore, and unfortunately, this part of the project

remains to be determined.

We also implemented a character decider that was

supposed to go hand-in-hand with the damaged detection,

so that we could match the damage data to a character. We

gathered images of the 10 characters that we initially

planned on using, although 2 of them were later cut out

due to limitations on data gathering for the neural

networks. We cropped the given image of a frame to

extract the 2 character portraits then used ORB from

OpenCV to detect features and select matches between an

input image with each of the 10 character portraits we had.

We calculated the sum of the 10 matches that had the

smallest distance and that value was used as a distance

metric to determine which character it was.

Our character images were of the characters at their

default color. We tested with input images where the

characters had different costume colors, and it seemed to

work well. However, because our first model was trained

to detect characters as well as bounding boxes, we decided

that this part of the project was somewhat redundant and

unnecessary to continue developing, especially

considering the damage detection portion was also

postponed.

5. Experiments

5.1. Character Recognizer and Bounding Box

Our best results consisted of a final training accuracy of

around 89%, but we know that this is potentially due to

overfitting since our dataset was relatively small and

greatly limited in size by our group’s ability to annotate

and generate test data.

Because the performance of this network was heavily

dependent on how visibly well the boxes fit around each

character and whether the labels were correct, it was very

easy to gain an understanding of how accurate our model

was predicting correct boxes and labels. We fed it several

video frames that were not in the training set for testing

and observed each one to see whether or not the

predictions were accurate. Our best result produced an

estimate of 60% correctly labeled frames, with the other

40% either missing a label, having an incorrect label, or

plainly drawing random bounding boxes around

background or stage content.

5.2. Idle Binary Classifier

 The best test accuracy we achieved for the binary

classifier was 93%. Since our training data was a 70:30

split between idle and non-idle frames, if our network

were to simply choose to label every input as idle, we

would see 50% test accuracy, since our testing data was an

even 50:50 split.

 If labelling idle or non-idle was left to random chance,

the probability of getting a 93% accuracy on the test data

of 90 images, which would mean guessing 83 of the

images correctly, would be (0.5)83 = 6.36 × 10−26. This

goes to show that our network performs much better than

random chance.

 Even if our model guessed idle 70% of the time and

non-idle 30% of the time, due to the training data division,

the probability of it getting a 93% accuracy, assuming the

majority of the images it got correct were idle, would be

(0.7)45 + (0.3)38 = 1.07 × 10−7, which is still very

small. Considering we were consistently able to get testing

accuracy results over 90%, this shows that our model has

actually learned something from the data and posture of

the characters, and isn’t just performing a random 50/50

guess.

6. Conclusion

 While our end results are far from perfect, and there

clearly needs to be much more work and data for our

pipeline to function adequately, we believe that the Smash

Ultimate match analyzer as it is currently shows the

potential for computer vision and machine learning for the

competitive gaming landscape. Had our group had more

time and resources, and were able to generate or get access

to a larger volume of annotated data, we believe that this

model could create output similar to other analysis tools,

but without the use of external hardware. For what needs

to be done next for our analyzer, we believe that

generating further labeled data to train the third model in

our pipeline would be the next step, along with completing

the implementation for the damage detection system such

that it can create consistent readings. Hopefully, given

5

more time in the future and more access to training data,

the pipelined learning models could be refined to create

consistent and accurate results.

