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1. Introduction 

    Every great competitor knows that analysis and study 

are extremely important parts of learning and developing 

skills and knowledge; being able to go back and study past 

footage, to see what and when mistakes are made, and 

learning how to minimize error and learn the habits of 

opponents plays a huge part in modern sports and 

competition. In today’s modern competitive landscape, 

this extends not only to traditional competitions but also 

competitions in the virtual space, namely Smash Brothers.  

    Smash, while on the surface seems simple and 

cartoonish, actually has a surprising amount of depth and 

skill in serious levels of play. Any competitive Smash fan 

will tell you about the sheer speed and intensity of the 

game, anywhere from professional players battling for 

international titles or friends going head-to-head at local 

tournaments and gatherings. Either way, Smash is very 

fast, and sometimes, it can be very easy to miss things 

when going back and reviewing footage. That’s why we 

wanted to create a tool to help analyze Smash footage, and 

to allow players to get an entirely new perspective on 

Smash Bros. Ultimate.  

    While some applications that analyze Smash footage 

already exist (such as Project Slippi for Smash Bros 

Melee), none that rely solely on video data exist - that is, 

there is no application that can analyze and extract data 

without the use of external systems or hardware, such as 

input capture devices or separate real-time capture cards. 

We wanted to create a system that could return similar 

analysis, but without the need for these external devices. 

We wanted to allow players to see these statistics and 

analyses while only requiring the video footage of 

matches.  

   While both learning models and competitive gaming 

have been around for decades, we still have yet to see a 

successful and watershed combination of the two - and 

while our analyzer is relatively small in scope and may not 

be as refined and accurate as it could be, it can prove to be 

a stepping stone of potential for another huge role for 

machine learning.  

2. Contributions 

    The project’s main goal was to act as an analysis tool 

which provided information on what each character in a 

match was doing at a specific time. Due to the unexpected 

scope of the problem, we were only able to complete the 

first two parts of the system: an FRCNN for finding 

bounding boxes and character labels, and the binary 

classifier, which identified whether or not a character was 

currently performing a move or not. 

    In regards to algorithms, we utilized pre-existing 

network  architectures, Keras FRCNN and Alexnet, and 

already existing training weights. The code for the Keras 

FRCNN was borrowed and augmented to fit our system 

implementation. For Alexnet, we used Pytorch’s built-in 

implementation  and restructured it to fit our pipeline’s 

needs. The general structure of this system, using an 

FRCNN and 2 different Alexnet models, was an original 

idea. The video data was both taken from already existing 

Youtube clips and generated by our group. Because of the 

novelty of this projects goal, there did not exist any 

prelabeled data for Smash Ultimate matches - therefore, 

our group was required to label and annotate frames from 

various Smash Ultimate matches ourselves.  

2.1. Idea and Algorithms 

    We decided to implement our first network using Keras 

FRCNN by another person’s training of the network to 

detect Fox from Super Smash Brothers Melee: 

https://adamspannbauer.github.io/2017/12/28/super-

smash-cv/. Seeing that he only needed to annotate about 

300 frames made us hopeful that we wouldn’t need too 

much data to get decent results. Unfortunately, because 

Melee and Ultimate are visually very different games, as 

well as the scope of our project being much larger, 

training this first model proved to be more difficult than 

anticipated.  

2.2. Code 

    The project trained a Keras FRCNN to detect and draw 

bounding boxes around 8 separate characters. We took an 

already implemented Keras FRCNN from 

https://github.com/kbardool/keras-frcnn. We set up a 

Colab Notebook to run the python files. Unfortunately, it 

seemed this repository hadn’t been maintained recently, 
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and we ran into errors with function names changing, 

which we had to fix.  

    We also made changes to the test python file to better 

suit our needs. In order to get the test_frcnn.py file to 

work in Colab and be more flexible in general, we added 

an extra argument to specify in what directory the labeled 

frames would be saved to. We also added another 

argument and fixed the implementation so we could 

extract the actual prediction data and save it to a specified 

directory. This data was stored in a file and formatted in 

the same way that the train_frcnn.py file expected input. 

This was purposefully done to make the data more simple 

to parse.  

    Although we used the pre-trained Alexnet model for our 

binary classifier, we had to set up our own DatatSet class 

and handle training and testing. We took training and 

testing functions from homework 5. 

    To help simplify our pipeline, we wrote python scripts 

for parsing our annotations into a single text file for easy 

input. Because we ended up using two different programs 

for annotation, one compatible with Linux systems and 

one for Windows, the script parsed the data as both 

PascalVOC XML and JSON. This script then went 

through each of the annotation folders, split the data into 

training and test sets on separate CSV files, and then 

grabbed all the test images and put them into a separate 

directory. 

    Our system also included a script to run the first trained 

network on images to provide input for the second 

network, including cropping the images by the outputted 

bounding box.  

 

2.3 Data 

 

    Since there was no pre-labeled data of Smash Ultimate 

footage that included bounding boxes and character 

annotations, we had to gather all of the data ourselves. 

Some of the data came from Youtube videos, and others 

were videos generated by our group recording matches 

from our Nintendo Switches. We did all the annotations by 

hand, as well. To do this, first we used ffmpeg to split up 

the video locally into frames, around one frame per 

second. After they were broken up into frames, we then 

labeled the frames with a labeling program. We uploaded 

these labeled frames into Google Drive so our Colab 

Notebook could use them. The programs we used to 

annotate were labelImg, which is shown above in the 

image, from https://github.com/tzutalin/labelImg, and 

VGG annotator, a simple browser-based image annotation 

tool (http://www.robots.ox.ac.uk/~vgg/software/via). 

3. Data 

    Our dataset is limited to 8 characters, with different 

costume colors and around 5 different stages, played on 

either the Battlefield (triple-platform) or Omega (flat) 

forms.  

    When gathering the data for the bounding boxes, we 

went frame by frame and drew the boxes around each 

character shown in the frame. Again, this process had to 

be done manually. We also labeled the boxes with which 

character they encompassed. This proved difficult at times 

because characters often ended up blending in with the 

background or stage. Characters with complex clothing 

and weapons also proved difficult to annotate, as 

determining exactly the boundary of these complex 

characters was not always clear.  

    The camera also moves to focus on the characters as 

they fight, so the backgrounds aren’t static. Sometimes, 

because of the complex visual effects and composition, the 

characters can also appear to be inside platforms or 

covered by other animations or effects, especially when 

the characters are using certain attacks or being hit. Some 

characters, such as Ganondorf, have capes or, like Lucina, 

have swords, and we wanted to include those in the 

bounding box. This sometimes led to much larger 

bounding boxes for these characters and brought in more 

background, which we worried could throw the network 

off. Because of these variations, there was inevitably a 

decent amount of noise in our dataset. However, we hoped 

the noisy data could help the network learn the character, 

instead of picking up on other factors like the default color 

of the character, giving our model more robustness.  

    Annotating the data for the idle binary classifier was 

especially tricky, because we had to differentiate ourselves 

whether or not the character was using a move. While this 

may sound simple, because of the complex and sometimes 

subtle starting and ending animations for each move, this 

https://github.com/tzutalin/labelImg
http://www.robots.ox.ac.uk/~vgg/software/via/via-1.0.6.html
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proved to be a difficult task. We were able to work around 

this difficulty by recording games where a player-

controlled character simply didn’t use any moves and 

another game where the player-controlled character used 

lots of moves. Because of the large amount of idle 

movement though, this led to an uneven split in our 

training data, roughly 70% being idle images and 30% 

being non-idle. We kept our testing data an even 50:50 

split between idle and non-idle.  

    For the character and bounding box detector, the 

network can’t generalize on any new characters it’s 

shown. Ideally, though, our idle binary classifier will be 

able to generalize on new characters, since the pose of 

characters walking or running are pretty similar.  

 

4. Method 

4.1. Character Recognizer and Bounding Box 

 

 

    Our character detector was implemented using a pre-

existing model. Specifically we used Keras’s Faster R-

CNN implementation. The input to the training program 

for this network was a CSV file consisting of the filepath 

of an image, bounding box coordinates, and the label for 

the box. We added data augmentation, including vertical 

flips, horizontal flips, and 90 degree rotations, to generate 

more data from the relatively limited frames we annotated.  

The optimizer used was Keras’s Adam with a learning 

rate of 1e-5. This was how the training python file was 

initially set, therefore we felt that changing any of these 

factors may affect performance. For testing, the input to 

the test program was a directory for test images. 

 

4.2. Idle Binary Classifier 

 

    Our idle binary classifier used the existing AlexNet 

model. The above figure shows the architecture of 

AlexNet. Since we only had 2 classes, idle and non-idle, 

we added a final layer to go from 1000 dimensions to 2 

dimensions, as opposed to the 1000 classes AlexNet 

normally outputs. 

    We also included data augmentation, in the form of 

random horizontal flips, vertical flips, and 90 degree 

rotations. We used Cross Entropy as our loss function, and 

Adam for our optimizer, with a learning rate of 0.0005 and 

a weight decay of 0.0005. We achieved our best results 

training on a batch size of 64 and 124 epochs.   

4.3. Damage Detection and Character Decider System 

    Initially, part of our project was to have a system that 

would read the percentages displayed at the bottom of the 

screen and record values, in order to create a time plot of 

damage over time for each player in the match. Our first 

plan included using a python OCR package, pytessaract, to 

detect these percentage values per frame - however, this 

proved ineffective due to the game’s font and intense 

visual effects, causing pytessaract to get inaccurate or non-

existent readings. We attempted to alleviate this issue 

through various preprocessing on the percentage images, 

including adaptive thresholding, using the color data, and 

applying gaussian blur. However, no methods we tried 

yielded consistent results, and our group ultimately 

decided that it was much more important to allocate our 
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time towards the multiple models in the pipeline. 

Therefore, and unfortunately, this part of the project 

remains to be determined.  

We also implemented a character decider that was 

supposed to go hand-in-hand with the damaged detection, 

so that we could match the damage data to a character. We 

gathered images of the 10 characters that we initially 

planned on using, although 2 of them were later cut out 

due to limitations on data gathering for the neural 

networks. We cropped the given image of a frame to 

extract the 2 character portraits then used ORB from 

OpenCV to detect features and select matches between an 

input image with each of the 10 character portraits we had. 

We calculated the sum of the 10 matches that had the 

smallest distance and that value was used as a distance 

metric to determine which character it was. 

Our character images were of the characters at their 

default color. We tested with input images where the 

characters had different costume colors, and it seemed to 

work well. However, because our first model was trained 

to detect characters as well as bounding boxes, we decided 

that this part of the project was somewhat redundant and 

unnecessary to continue developing, especially 

considering the damage detection portion was also 

postponed.  

5. Experiments 

5.1. Character Recognizer and Bounding Box 

 

Our best results consisted of a final training accuracy of 

around 89%, but we know that this is potentially due to 

overfitting since our dataset was relatively small and 

greatly limited in size by our group’s ability to annotate 

and generate test data.  

Because the performance of this network was heavily 

dependent on how visibly well the boxes fit around each 

character and whether the labels were correct, it was very 

easy to gain an understanding of how accurate our model 

was predicting correct boxes and labels. We fed it several 

video frames that were not in the training set for testing 

and observed each one to see whether or not the 

predictions were accurate. Our best result produced an 

estimate of 60% correctly labeled frames, with the other 

40% either missing a label, having an incorrect label, or 

plainly drawing random bounding boxes around 

background or stage content.  

5.2. Idle Binary Classifier 

     The best test accuracy we achieved for the binary 

classifier was 93%. Since our training data was a 70:30 

split between idle and non-idle frames, if our network 

were to simply choose to label every input as idle, we 

would see 50% test accuracy, since our testing data was an 

even 50:50 split.  

    If labelling idle or non-idle was left to random chance, 

the probability of getting a 93% accuracy on the test data 

of 90 images, which would mean guessing 83 of the 

images correctly, would be (0.5)83 = 6.36 × 10−26. This 

goes to show that our network performs much better than 

random chance.  

    Even if our model guessed idle 70% of the time and 

non-idle 30% of the time, due to the training data division, 

the probability of it getting a 93% accuracy, assuming the 

majority of the images it got correct were idle, would be 

(0.7)45 + (0.3)38  =  1.07 × 10−7, which is still very 

small. Considering we were consistently able to get testing 

accuracy results over 90%, this shows that our model has 

actually learned something from the data and posture of 

the characters, and isn’t just performing a random 50/50 

guess.  

 

6. Conclusion 

    While our end results are far from perfect, and there 

clearly needs to be much more work and data for our 

pipeline to function adequately, we believe that the Smash 

Ultimate match analyzer as it is currently shows the 

potential for computer vision and machine learning for the 

competitive gaming landscape. Had our group had more 

time and resources, and were able to generate or get access 

to a larger volume of annotated data, we believe that this 

model could create output similar to other analysis tools, 

but without the use of external hardware. For what needs 

to be done next for our analyzer, we believe that 

generating further labeled data to train the third model in 

our pipeline would be the next step, along with completing 

the implementation for the damage detection system such 

that it can create consistent readings. Hopefully, given 
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more time in the future and more access to training data, 

the pipelined learning models could be refined to create 

consistent and accurate results.  

 


